Elektrotechnik

Aus Demo Wiki
Zur Navigation springenZur Suche springen

Vorlage:Weiterleitungshinweis Elektrotechnik ist eine Ingenieurwissenschaft, die sich mit der Forschung und der Entwicklung sowie der Produktion, dem Zusammenbau und der Instandhaltung von Elektrogeräten und elektrischen Anlagen befasst, die zumindest anteilig auf elektrischer Energie beruhen. Hierzu gehören als Beispiel der Bereich der Wandler, die elektrischen Maschinen und Bauelemente sowie Schaltungen für die Steuer-, Mess-, Regelungs-, Nachrichten-, Geräte- und Rechnertechnik bis hin zur technischen Informatik, Elektroinstallation und Energietechnik.

Datei:AC Motor - Cut Section - Electricity Gallery - BITM - Kolkata 2015-05-09 6513.JPG
Elektromotor (aufgeschnitten) für Präsentationszwecke

Hauptgebiete

[Bearbeiten]

In unserer heutigen Zivilisation werden fast alle Abläufe und Einrichtungen elektrisch betrieben oder laufen unter wesentlicher Beteiligung elektrischer Geräte und Steuerungen. Eine der Eigenschaften von Elektrizität ist, dass Elektrizität sowohl für die Energieübertragung als auch für die Informationsübertragung und die Informationsein- und Ausgabe sehr nützlich ist, weshalb sich die Elektrotechnik zuerst in diesen beiden Bereichen bemerkenswert entwickelte. Später im 20. Jahrhundert erwies sich die Elektrizität auch für die Informationsverarbeitung und für die Informationsspeicherung als sehr nützlich. Die klassische Einteilung der Elektrotechnik war deshalb die Starkstromtechnik, die heute in der elektrischen Energietechnik und der Antriebstechnik ihren Niederschlag findet, und die Schwachstromtechnik, die sich zur Nachrichtentechnik formierte. Als weitere Gebiete kamen die elektrische Messtechnik und die Automatisierungstechnik sowie die Elektronik hinzu. Die Grenzen zwischen den einzelnen Bereichen sind dabei vielfach fließend. Viele Berufstätige im Bereich Elektrotechnik arbeiten und spezialisieren sich ausschließlich in einem dieser Hauptgebiete, benötigen jedoch auch viele Kenntnisse aller Hauptgebiete. Mit zunehmender Verbreitung der Anwendungen ergaben sich zahllose weitere Spezialisierungsgebiete.

Theoretische Elektrotechnik

[Bearbeiten]

Die Basis der Theorie und Bindeglied zur Physik der Elektrotechnik sind die Erkenntnisse aus der Elektrizitätslehre. Die Theorie der Schaltungen befasst sich mit den Methoden der Analyse von Schaltungen aus passiven Bauelementen. In der theoretischen Elektrotechnik wird unterschieden zwischen Elektrostatik und Elektrodynamik, letzteres als Beispiel die Theorie der Felder und Wellen, baut auf den Maxwell-Gleichungen und der Lorentzkraft auf. Wer sein theoretisches Grundlagenwissen noch über das Elektrotechnikstudium hinaus vertiefen möchte, kann dies mit der Quantenelektrodynamik und der Elektroschwachen Wechselwirkung tun. Ein Wissen, das zurzeit in der praktischen Elektrotechnik jedoch kaum oder nur sehr selten eine Rolle spielt und eher dem Bereich der Grundlagenforschung und den Fachgebieten Theoretische Physik und Experimentalphysik zuzuordnen ist.

Elektrische Energietechnik

[Bearbeiten]

Vorlage:Hauptartikel

Datei:Dülmen, Umspannstation -- 2014 -- 0005.jpg
Übertragungsleitung und Umspannwerk

Die elektrische Energietechnik (früher Starkstromtechnik) befasst sich mit der Gewinnung, Übertragung und Umformung elektrischer Energie mit hoher elektrischer Leistung sowie auch der Hochspannungstechnik. Elektrische Energie wird in den meisten Fällen durch Wandlung aus mechanisch-rotatorischer Energie mittels Generatoren gewonnen. Zur klassischen Starkstromtechnik gehören außerdem der Bereich der Verbraucher elektrischer Energie sowie die Antriebstechnik. Zu dem Bereich der Übertragung elektrischer Energie im Bereich der Niederspannung zählt auch der Themenbereich der Elektroinstallationen, wie sie unter anderem vielfältig im Haushalt zu finden sind.

Klassische Teilgebiete oder Unterrichtsfächer

[Bearbeiten]

Elektrische Antriebstechnik

[Bearbeiten]

Vorlage:Hauptartikel

Die Antriebstechnik, früher ebenfalls als „Starkstromtechnik“ betrachtet, setzt elektrische Energie mittels elektrischer Maschinen in mechanische Energie um. Klassische elektrische Maschinen sind Synchron-, Asynchron- und Gleichstrommaschinen, wobei vor allem im Bereich der Kleinantriebe viele weitere Typen bestehen. Aktueller ist die Entwicklung der Linearmotoren, die elektrische Energie ohne den „Umweg“ über die Rotation direkt in mechanisch-lineare Bewegung umsetzen. Die Antriebstechnik spielt eine große Rolle in der Automatisierungstechnik, da hier oft eine Vielzahl von Bewegungen mit elektrischen Antrieben zu realisieren sind. Für die Antriebstechnik wiederum spielt Elektronik eine große Rolle, zum einen für die Steuerung und Regelung der Antriebe, zum anderen werden Kinetische Antriebe oft mittels Leistungselektronik mit elektrischer Energie versorgt. Auch hat sich der Bereich der Lastspitzenreduzierung und Energieoptimierung im Bereich der Elektrotechnik erheblich weiterentwickelt.

Klassische Teilgebiete oder Unterrichtsfächer

[Bearbeiten]

Nachrichtentechnik

[Bearbeiten]

Vorlage:Hauptartikel

Datei:Mobilfunkmasten auf Wohnhaus Gotzingerplatz Muenchen.JPG
Mobilfunkmasten

Mit Hilfe der Nachrichtentechnik, auch Informations- und Kommunikationstechnik oder Telekommunikation (früher Schwachstromtechnik) genannt, werden Signale durch elektrische Leitung oder mit elektromagnetischen Wellen als Informationsträger von einer Informationsquelle (dem Sender) zu einem oder mehreren Empfängern (der Informationssenke) übertragen. Dabei kommt es darauf an, die Informationen so verlustarm zu übertragen, dass sie beim Empfänger erkannt werden können (siehe auch Hochfrequenztechnik, Amateurfunk). Wichtiger Aspekt der Nachrichtentechnik ist die Signalverarbeitung, zum Beispiel mittels Filterung, Kodierung oder Dekodierung.

Klassische Teilgebiete oder Unterrichtsfächer

[Bearbeiten]

Elektronik, Mikroelektronik und Nanoelektronik

[Bearbeiten]

Vorlage:Hauptartikel

Datei:Integrated Circuit.jpg
Integrierter Schaltkreis

Die Elektronik befasst sich mit der Entwicklung, Fertigung und Anwendung von elektronischen Bauelementen wie zum Beispiel Spulen oder Halbleiterbauelementen wie Dioden und Transistoren. Die Anwendungen werden im Allgemeinen praktisch auf Leiterplatten mit der Leiterplattenbestückung realisiert.

Die Digitaltechnik lässt sich insoweit der Elektronik zuordnen, als die klassische Logikschaltung aus Transistoren aufgebaut ist. Andererseits ist die Digitaltechnik auch Grundlage vieler Steuerungen und damit für die Automatisierungstechnik bedeutsam. Die Theorie ließe sich auch der theoretischen Elektrotechnik zuordnen.

Die Entwicklung der Leistungshalbleiter (Leistungselektronik) spielt in der Antriebstechnik eine immer größer werdende Rolle, da Frequenzumrichter die elektrische Energie wesentlich flexibler bereitstellen können, als es beispielsweise mit Transformatoren möglich ist.

Die Mikroelektronik beschäftigt sich mit der Entwicklung und Herstellung integrierter Schaltkreise. In einigen Bereichen der Halbleiterindustrie und Halbleitertechnik wurde die 100-Nanometer-Grenze unterschritten, so spricht man hier bereits formal von Nanoelektronik.

Klassische Teilgebiete oder Unterrichtsfächer

[Bearbeiten]

Automatisierungstechnik

[Bearbeiten]

Vorlage:Hauptartikel

Datei:S71500.JPG
Speicherprogrammierbare Steuerung

In der Automatisierungstechnik werden mittels Methoden der Mess-, Steuerungs- und Regelungstechnik (zusammenfassend MSR-Technik genannt) einzelne Arbeitsschritte eines Prozesses automatisiert bzw. überwacht. Heute wird üblicherweise die MSR-Technik durch Digitaltechnik gestützt. Eines der Kerngebiete der Automatisierungstechnik ist die Regelungstechnik. Regelungen sind in vielen technischen Systemen enthalten. Beispiele sind die Regelung von Industrierobotern, Autopiloten in Flugzeugen und Schiffen, Drehzahlregelungen in Motoren, die Stabilitätskontrolle (ESP) in Automobilen, die Lageregelung von Raketen und die Prozessregelungen für Chemieanlagen. Einfache Beispiele des Alltags sind die Temperaturregelungen zusammen mit Steuerungen in vielen Konsumgütern wie Bügeleisen, Kühlschränken, Waschmaschinen und Kaffeeautomaten (siehe auch Sensortechnik).

Klassische Teilgebiete oder Unterrichtsfächer

[Bearbeiten]

Neu entstehende Spezialisierungsgebiete

[Bearbeiten]

Gebäudetechnik

[Bearbeiten]

Vorlage:Hauptartikel Gebräuchlich sind ebenfalls die Begriffe Technische Gebäudeausrüstung (TGA) oder Versorgungstechnik mit Schwerpunkt Elektrotechnik. In Gebäuden sorgen Elektroinstallationen sowohl für die leitungsgebundene Verteilung elektrischer Energie als auch für die Nutzungsmöglichkeit von Kommunikationsmitteln (Klingeln, Sprechanlagen, Telefone, Fernsehgeräte, Satellitenempfangsanlagen und Netzwerkkomponenten). Neben der leitungsgebundenen Informationsverteilung kommt verstärkt Funkübertragung (DECT, WLAN) zum Einsatz. Die Gebäudeautomation nutzt Komponenten der Mess-, Steuerungs- und Regelungstechnik in Gebäuden, um den Einsatz elektrischer und thermischer Energie zu optimieren, beispielsweise im Bereich der Beleuchtungs-, Klima- und Belüftungstechnik. Im Rahmen der Gebäudeautomation finden zudem verschiedene Systeme für Gebäudesicherheit Verwendung.

Medizintechnik

[Bearbeiten]

Vorlage:Hauptartikel Elektrotechnik-Medizintechnik Studiengänge werden an immer mehr Hochschulen angeboten. Durch die innovativen technischen Entwicklungen im Bereich der Medizin, werden in Krankenhäusern oder in Medizintechnik -Firmen und -Betrieben immer mehr spezialisierte Ingenieure benötigt.

Bereiche wären beispielsweise Myoelektrik, Elektronik künstlicher Organe, Robotik-Prothesen, Bioprinter, HF-Chirurgie, Laserchirurgie, Roboterchirurgie, Röntgenapparate, Sonografie, Magnetresonanztomographie, Optische Kohärenztomografie, Nuklearmedizin, Herz-Lungen-Maschinen, Dialysegeräte, Spezielle Anforderungen der Krankenhaustechnik.

Computer-, Halbleiter- und Gerätetechnik

[Bearbeiten]

Vorlage:Hauptartikel Die elektronische Gerätetechnik befasst sich mit der Entwicklung und Herstellung elektronischer Baugruppen und Geräte.<ref name="lienig">Vorlage:Literatur</ref> Sie beinhaltet damit den Entwurf und die anschließende konstruktive Gestaltung elektronischer Systeme (Verdrahtungsträger, Baugruppen, Elektrogeräte) und bedient sich dabei der Halbleitertechnik und der Rechnertechnik. Anwendungsbeispiele sind die Entwicklung von Computerhardware, Haushaltsgeräten, medizintechnischen Geräten, Informationstechnik und Unterhaltungselektronik.

Geschichte, bedeutende Entwicklungen und Personen

[Bearbeiten]

Vorlage:Siehe auch

Altertum

[Bearbeiten]

Das Phänomen, dass bestimmte Fischarten (wie beispielsweise Zitterrochen oder Zitteraale) elektrische Spannungen erzeugen können (mit Hilfe des Elektroplax), war im alten Ägypten um 2750 v. Chr. bekannt.

Die meteorologische Erscheinung der Gewitterblitze begleitet die Menschheit schon immer. Die Deutung, dass die Trennung elektrischer Ladungen innerhalb der Atmosphäre in Gewittern dieses Phänomen verursacht, erfolgte jedoch erst in der Neuzeit. Elektrostatische Phänomene waren allerdings schon im Altertum bekannt.

Datei:Illustrerad Verldshistoria band I Ill 107.jpg
Thales von Milet

Die erste Kenntnis über den Effekt der Reibungselektrizität etwa 550 v. Chr. wird dem Naturphilosophen Thales von Milet zugeschrieben. In trockener Umgebung kann Bernstein durch Reiben an textilem Gewebe (Baumwolle, Seide) oder Wolle elektrostatisch aufgeladen werden. Was zu jener Zeit aber noch nicht bekannt war, ist, dass durch Aufnahme von Elektronen Bernstein eine negative Ladung erhält, das Reibmaterial durch Abgabe von Elektronen dagegen eine positive Ladung. Durch die Naturalis historia von Plinius dem Älteren wurde das durch diese Experimente beobachtete Wissen bis ins Spätmittelalter überliefert.

17. Jahrhundert

[Bearbeiten]
Datei:William Gilbert 45626i.jpg
William Gilbert
Datei:Otto-von-Guericke-TS.jpg
Otto von Guericke

18. Jahrhundert

[Bearbeiten]
Datei:Leid-flasch.gif
Kondensator (1800)
Datei:Georges-Louis Le Sage.jpg
Georges-Louis Le Sage (1780)
Datei:Luigi galvani.jpg
Luigi Galvani

19. Jahrhundert

[Bearbeiten]
Datei:Alessandro Volta.jpeg
Alessandro Volta
Datei:Sir Humphry Davy, Bt by Thomas Phillips.jpg
Humphry Davy (1821)
Datei:Ampere Andre 1825.jpg
André-Marie Ampère (1825)
Datei:Georg Simon Ohm3.jpg
Georg S. Ohm
Datei:M Faraday Th Phillips oil 1842.jpg
Michael Faraday (1842)
Datei:Wilhelm Eduard Weber Litho.jpg
Wilhelm E. Weber (1856)
  • 1833 verbanden Carl Friedrich Gauß und Wilhelm E. Weber eine Sternwarte und Physikalisches Kabinett in Göttingen (Distanz von 1500 Meter) mit zwei Drähten und bauten eine elektromagnetische Telegraphenanlage. Die verwendeten beweglichen Spulen bewegten ein Lichtsystem mit Spiegeln. Für die Nachrichtenübermittlung verwendeten sie einen Binärcode. Dieser war dem Morsecode bereits sehr ähnlich. 1900 wurde die CGS-Einheit für die magnetische Flussdichte nach Gauß benannt. Die SI-Einheit für den magnetischen Fluss wurde nach Weber benannt.
  • 1833 entdeckte Michael Faraday, dass bestimmte Materialien sich elektrisch anders verhalten als die typischen metallischen Leiter. So bemerkte er, dass der Widerstand von Silbersulfid mit sinkender Temperatur abnimmt. Dies ist umgekehrt zu der bei Metallen beobachteten Abhängigkeit. Er gilt somit in vielen Kreisen als der Entdecker der Halbleiter und Begründer der Halbleitertechnik.<ref>Vorlage:Internetquelle</ref>
  • Im Mai 1834 entwickelte Moritz Jacobi den ersten rotierenden Elektromotor mit Gleichstrom, der tatsächlich eine bemerkenswerte und brauchbare mechanische Leistung abgab.<ref name=":1" /> Er war somit in der Lage, das weltweit erste Elektroboot (das Jacobi-Boot) zu bauen, welches er 1838 mit einer Fahrt auf der Newa in Sankt Petersburg demonstrierte (Mit 0,3 kW 7,5 km 2,5 km/h). 1839 konnte er die mechanische Leistung seines Motors auf 1 kW erhöhen und erreichte mit dem Boot dann Geschwindigkeiten von bis zu 4 km/h.<ref>Vorlage:Internetquelle</ref>
  • 1834 ermittelte Charles Wheatstone experimentell in England noch relativ ungenau die Stromgeschwindigkeit zu 400 000 km/s, und verifizierte somit die Hypothese von Sir Francis Ronalds, dass die Stromgeschwindigkeit endlich ist.<ref name=":4" />
Datei:Joseph Henry-Smillie Photo-1874.jpg
Joseph Henry (1874)
Datei:Samuel Morse 1840.jpg
Samuel Morse (1840)
Datei:James Clerk Maxwell big.jpg
James Clerk Maxwell
  • Michael Faraday leistete einen großen Beitrag auf dem Gebiet der elektrischen und magnetischen Felder, von ihm stammt auch der Begriff der „Feldlinie“. Die Erkenntnisse Faradays waren die Grundlage für James Clerk Maxwells Arbeiten. Er vervollständigte die Theorie des Elektromagnetismus zur Elektrodynamik und deren mathematische Formulierung. Die Quintessenz seiner Arbeit, die 1864 eingereichten und 1865 veröffentlichten Maxwell-Gleichungen,<ref>James Clerk Maxwell: A Dynamical Theory of the Electromagnetic Field. 1864 eingereicht und dann veröffentlicht in: Philosophical Transactions of the Royal Society of London (155), 1865, S. 459–512.</ref> sind eine der grundlegenden Theorien in der Elektrotechnik. 1935 wurde die CGS-Einheit für den magnetischen Fluss nach ihm benannt.
Datei:Ernst Werner von Siemens.jpg
Werner von Siemens
Datei:Thomas Edison2.jpg
Thomas Edison (1922)
Datei:Gluehlampe 01 KMJ.png
Moderne Edisonsockel-Glühlampe (2004)
  • Im Dezember 1881 patentierte Edison den Lampensockel bzw. Edisonsockel (US251554A Electric lamp socket or holder).
  • Im September 1882 begann Edison in Manhattan erste Kraftwerke zu errichten, die den Strom für seine Gleichspannungsnetze in der Stadt lieferten.<ref>Vorlage:Internetquelle</ref> Um die Städte zu elektrifizieren und zu beleuchten, musste alle 800 m ein Kraftwerk errichtet werden, da Gleichstrom über weite Strecken zu transportieren und zu verteilen sehr unwirtschaftlich ist. So war bereits klar, dass die Elektrifizierung auf dem Land sehr unwirtschaftlich sein wird.
  • Im Juli 1882 reichte Henry W. Seely das weltweit erste Patent eines elektrischen Bügeleisens ein (US259054A Electric flat iron).<ref>Vorlage:Internetquelle</ref>
  • 1882 erfanden Lucien Gaulard und John Dixon Gibbs einen Transformator, den sie am Anfang noch „Sekundär-Generator“ nannten, und entwickelten damit die weltweit erste Wechselstromübertragung. Mit ihrer Erfindung waren sie 1883 in der Lage einen Wechselstrom mit 2000 Volt über eine Versuchsstrecke von 40 km mit geringen Verlusten und kleinen Kupferleiterleiterquerschnitte zu übertragen, und 1884 eine Versuchsstrecke zwischen Turin und Lanzo von 80 km zu ermöglichen. Dies zeigte, dass der Wechselstrom, zu dieser Zeit, wirtschaftlicher transportiert und verteilt werden kann als der von Edison für das Stromnetz favorisierte Gleichstrom. Lampen für den Wechselstrom gab es bereits. Allerdings gab es noch keine brauchbaren Wechselstrommotoren.
  • Am 1. Februar 1883 führte Edison für seine Stromnetze den weltweit ersten Stromzähler ein. Dieser als Edisonzähler bezeichnete Stromzähler konnte nur Gleichströme erfassen.
  • 1883 begründete Erasmus Kittler an der TH Darmstadt (heute TU Darmstadt) den weltweit ersten Studiengang für Elektrotechnik. Der Studiengang dauerte vier Jahre und schloss mit einer Prüfung zum „Elektrotechnikingenieur“ ab. 1885 und 1886 folgten das University College London (GB) und die University of Missouri (USA), die weitere eigenständige Lehrstühle für Elektrotechnik einrichteten. Die so ausgebildeten Ingenieure waren erforderlich, um eine großflächige Elektrifizierung zu ermöglichen.
  • 1884 patentierte Paul Nipkow die Nipkow-Scheibe, welche er als „Elektrisches Teleskops“ bezeichnete. Dies schuf die Grundlage für das (elektromechanische) Fernsehen.
Datei:George Westinghouse.jpg
George Westinghouse
  • Am 20. März 1886 demonstrierte William Stanley in Great Barrington Massachusetts die erste U.S. amerikanische Wechselspannungsübertragung und Verteilung mittels Generatoren, Transformatoren und einer Hochspannungsleitung über eine Kurzstrecke von mehreren hundert Metern. Er setzte einen weiterentwickelten Transformator ein (US349611A Induction coil). Dies war der erste für kommerzielle Zwecke produzierte Transformator.<ref name=":8" /> Im Sommer 1886 testete der Industrielle George Westinghouse in Pittsburgh das gleiche System mit einer Versuchsstrecke von 3 Meilen. Ab diesem Zeitpunkt begann Edisons Propaganda gegen das Wechselstromsystem, dies sollte in den USA als sogenannter Stromkrieg (AC (Vorlage:Lang) gegen DC (Vorlage:Lang)) und weltweit als erster Formatkrieg in die Geschichte eingehen.
Datei:Heinrich Hertz.jpg
Heinrich Hertz
Datei:Tesla circa 1890.jpeg
Nikola Tesla (1890)
  • Am 12. Oktober 1887 meldete Nikola Tesla einen zweiphasigen Synchron-Wechselstrommotor zum Patent (US381968A Electro-magnetic motor) an. Nach seinen Angaben hatte er das Prinzip bereits 1882 erfunden. Dies war der erste brauchbare Motor für Wechselstrom. Durch diese Erfindung entstand die Bekanntschaft mit Westinghouse der ebenso bereits die großen Vorteile des Wechselstroms erkannte und bereit war alle Patente von Tesla zu kaufen. 1970 wurde die abgeleitete SI-Einheit für die magnetische Flussdichte nach ihm benannt.
  • Am 11. März 1888 veröffentlicht Galileo Ferraris an der Universität seine Forschungsergebnisse zu seinen erfundenen zwei- und mehrphasigen Asynchron-Wechselstrommotoren (Induktionsmotoren). Drehfeldmaschinen wie diese haben den Vorteil, dass sie ohne Schleifringe und Kommutator auskommen. Allerdings schlussfolgerte er in seiner Arbeit fälschlicherweise anhand eines Denkfehlers, dass diese Motoren energieineffizient seien, so dass er die Forschung auf diesem Gebiet einstellte.
  • Am 1. Mai 1888 meldete Tesla den Induktionsmotor (Zweiphasen-Asynchronmotor) zum Patent (US382279A Electro Magnetic Motor) an. Somit gelten Ferraris und Tesla in vielen Kreisen als die Erfinder des Induktionsmotors (Mehrphasigen-Asynchronmaschine). 1893 wurde bei der Weltausstellung World’s Columbian Exposition das Tesla-Kolumbus-Ei (Tesla's Egg of Columbus) vorgeführt, welches das Prinzip des Induktionsmotor veranschaulichen sollte. Nach Tesla's Aussagen hatte er es bereits 1887 einem New Yorker Investor vorgeführt um Gelder für seine Wechselstromtechnik zu erhalten.
Datei:Doliwo-Dobrowolsky.jpg
Michail Dolivo-Dobrowolski (1908)
Datei:ETH-BIB-Steinmetz , Charles Proteus (1865-1923)-Portrait-Portr 03023.jpg
Charles Proteus Steinmetz (1910)
Datei:Guglielmo Marconi.jpg
Guglielmo Marconi (1907)
Datei:Alexander Stepanovich Popov.jpg
Alexander Popow
  • 1896 führte Alexander Popow eine drahtlose Signalübertragung über eine Entfernung von 250 m durch. Im Gegensatz zu Marconi verabsäumte Popow aber die Patentierung seiner Erfindung. Das Verdienst der ersten praktischen Nutzung der Funken-Telegrafie stand somit Guglielmo Marconi zu. Nachdem er im Juni 1896 seinen Funken-Telegrafen in Großbritannien zum Patent angemeldet hatte, übertrug Marconi im Mai 1897 ein Morsezeichen über eine Distanz von 5,3 Kilometer.<ref>Joachim Beckh: Vorlage:Google Buch</ref> Am 12. Dezember 1901 feiert Marconi seinen großen Triumph: Zum ersten Mal in der Geschichte schickt ein Mensch eine Radiobotschaft quer über den Atlantik. Er sendet per Morsecode den Buchstaben „S“. 1909 erhalten Marconi und Ferdinand Braun für diese Leistung den Nobelpreis. Tesla soll jedoch bereits 1893 solche Funksysteme vorgeführt und in den darauffolgenden Jahren auch mehrere Patente eingereicht haben. Tesla widmete allerdings seine Zeit der Realisierung drahtloser Übertragung von Energie anstatt der Übertragung von Nachrichten. 1943 wurde vom obersten Gerichtshof von Amerika Nikola Tesla als alleiniger Erfinder des Radios anerkannt, denn Marconi verletzte bei seinen Radiofunksystemen 17 von Tesla's Patenten.<ref>Vorlage:Internetquelle</ref><ref>Vorlage:Internetquelle</ref>
  • Das Elektron wurde 1897 von Joseph John Thomson als Elementarteilchen erstmals nachgewiesen (er nannte es erst corpuscule). Er gab dann der Elementarladung später den Namen Elektron. 1906 erhielt er dafür den Nobelpreis für Physik.
  • 1897 entwickelte Karl Ferdinand Braun die erste Kathodenstrahlröhre. Verbesserte Varianten kamen zunächst in Oszilloskopen und Jahrzehnte später als Bildröhren in vollelektronischen Fernsehgeräten und Computermonitoren zum Einsatz.

20. Jahrhundert

[Bearbeiten]
Datei:Braun 1909.jpg
Ferdinand Braun (1909)
  • Dies bewies die Eignung der Kathodenstrahlröhre als Bildschreiber (für die Übertragung von Schriftzeichen). Im gleichen Jahr nutzte er eine braunsche Röhre zur Wiedergabe von 20-zeiligen schemenhaften Schattenbildern im Format 3 × 3 cm. Dies war vermutlich der weltweit erste voll-elektrische Fernsehmonitor.
Datei:International Electrotechnical Commission Logo.svg
International Electrotechnical Commission
Datei:Alexander Meissner plaque.jpg
Alexander Meißner Gedenkplatte
Datei:Takayanagi Kenjiro 1953.jpg
Takayanagi Kenjiro (1953)
Datei:Konrad Zuse (1992).jpg
Konrad Zuse (1992)
Datei:Replica-of-first-transistor.jpg
Nachbau des ersten Transistors (1947)
Datei:Jack Kilby 1960s.png
Jack Kilby
  • Ein wesentlicher Schritt nach der Erfindung des Bipolartransistors war die Entwicklung der Mikroelektronik in 1957. Der Elektroingenieur Jack Kilby realisierte und patentierte erstmals eine elektrische Schaltung aus einem Transistor und mehren Widerständen und Kondensatoren auf einem Germanium-Kristall, einem (hybriden) integrierten Schaltkreis (IC). Sein Ansatz hatte noch einige Schwächen, dennoch machte dieser Schritt weg von aus diskreten Bauelementen zusammengesetzten hinzu integrierten Schaltkreisen die heutigen Prozessorchips und damit die Entwicklung moderner Computer erst möglich. Im Jahre 2000 erhielt Kilby dafür den Nobelpreis für Physik. Es gibt allerdings Quellen die beschreiben, dass der vom Siemens-Physiker Werner Jacobi am 15. April 1949 zum Patent (Patent Nummer 833.366, gewährt 1952) angemeldete Halbleiterverstärker (als theoretisches Konzept) bereits einen integrierten Schaltkreis darstellt. Jacobi beschrieb, dass in einem Träger (jedoch ohne ein praktisches Beispiel zu nennen) 5 Transistoren und elektrische Verbindungen eingesetzt werden und so ein integrierter Schaltkreis geschaffen wird.<ref>Vorlage:Internetquelle</ref>
  • 1958 erfanden und bauten George Devol und der Elektroingenieur Joseph Engelberger den weltweit ersten Industrieroboter. Ein solcher Roboter wurde 1960 bei General Motors erstmals in der industriellen Produktion eingesetzt. Industrieroboter sind heute in verschiedenen Industrien, wie der Automobilindustrie, ein wichtiger Baustein der Automatisierungstechnik und Robotik.
  • 1958 wurde das analoge handvermittelte A-Netz von der Deutschen Bundespost unter der Bezeichnung Öffentlicher beweglicher Landfunkdienst (ÖbL) eingeführt. Das A-Netz war das erste Mobilfunksystem für Telefonie in der Bundesrepublik Deutschland und geriet bereits 1971 an seine technischen Grenzen. Der Nachfolger wurde 1972 das B-Netz.
Datei:Robert Noyce with Motherboard 1959.png
Robert Noyce (1959)
  • Im Juli 1959 meldete Robert Noyce den weltweit ersten echt monolithischen, d. h. aus bzw. in einem einzigen einkristallinen Substrat gefertigten, integrierten Schaltkreis zum Patent an. Das Entscheidende an dem Patent von Noyce war die komplette Fertigung der Bauelemente einschließlich Verdrahtung auf einem Substrat. Seine Arbeit basierte auf den von Jean Hoerni entwickelten Planarprozess. R. Noyce, J. Hoerni, J. Kilby und W. Jacobi gelten somit als Erfinder des Mikrochips. 1987 erhielt Noyce dafür die National Medal of Technology and Innovation. Er wurde bei der Verleihung des Nobelpreises an Jack Kilby nicht mitberücksichtigt, weil er zum Zeitpunkt der Verleihung bereits verstorben war.
Datei:Karl Kordesch 2003.JPG
Karl Kordesch (2003)
Datei:Nick Holonyak Jr.jpg
Nick Holonyak Jr. (2002)
Datei:Robert Dennard.jpg
Robert Dennard (2009)
Datei:Marcian Ted Hoff.jpg
Marcian Ted Hoff (2009)
  • 1968 erfand der Elektroingenieur Marcian Edward Hoff, bekannt als Ted Hoff, bei der Firma Intel den Mikroprozessor und läutete damit die Ära des Personal Computers (PC) ein. Zugrunde lag Hoffs Erfindung ein Auftrag einer japanischen Firma für einen Desktop-Rechner, den er möglichst preisgünstig realisieren wollte. Die erste kommerzielle Realisierung eines Mikroprozessors entwickelte 1971 Federico Faggin fast im Alleingang, den Intel 4004, ein 4-Bit-Prozessor. Aber erst der Intel 8080, ein 8-Bit-Prozessor aus dem Jahr 1973, ermöglichte den Bau des ersten PCs, des Altair 8800.
  • Im September 1968 wurden von Edward H. Stupp, Pieter G. Cath und Zsolt Szilagyi das erste Patent (US3540011A All solid state radiation imagers) für den ersten realisierbaren Bildsensor beantragt, der optische Bilder durch den Einsatz von Halbleiterbauelementen aufnehmen kann, und damit das erste praktische Konzept der Aufzeichnung von Standbildern durch das Digitalisieren von Signalen eines diskreten Sensorelements darstellte.<ref name=":6" />
  • Am 18. Oktober 1969 wurde von Willard Boyle und George Smith die Basis des CCD-Bildsensors (Vorlage:Lang) erfunden, und dafür 2009 mit dem Nobelpreis für Physik ausgezeichnet.<ref name=":6" /> Diese Basis führte in den 1980er und 1990er zur Entwicklung eines erweiterten sehr erfolgreichen Bildsensortyp, dem CMOS-Bildsensor. Beide Technologien haben ihre Vor- und Nachteile.
  • Das Internet begann am 29. Oktober 1969 als Arpanet. Es wurde zur Vernetzung der Großrechner von Universitäten und Forschungseinrichtungen genutzt. Das Internet wird auf elektrotechnischen Geräten und Leitungen betrieben.
  • Im Mai 1970 präsentierte die amerikanische Uhrenmarke Hamilton die weltweit erste vollelektronische Armbanduhr, die ohne bewegliche Teile auskommt. Im April 1971 ging diese mit dem Namen Pulsar in Serienproduktion.<ref>Vorlage:Internetquelle</ref>
  • 1970 produzierte und entwickelte Corning Inc. den ersten Lichtwellenleiter, der in der Lage war, Signale auch über eine längere Strecke ohne größere Verluste zu übertragen. Dies war ein revolutionärer Schritt und ermöglichte den wirtschaftlichen Aufbau von Glasfasernetzen.<ref name=":5" />
  • Im Juni 1971 reichten Louis A. Lopes Jr. und Owen F. Thomas das erste Patent für eine Digitalkamera ein. Im Oktober 1971 erfanden und bauten Thomas B. McCord vom MIT und James A. Westphal von CalTech die weltweit erste benutzbare Digitalkamera. Ihre Kamera hatte 256 × 256 Pixel (0,065 Megapixel), welche digitale 8-Bit-Bilddaten in ungefähr 4 Sekunden auf einer 9-spurigen elektronisch-magnetisch Digitalkassette abspeicherte.<ref name=":6" />
Datei:Robert Metcalfe National Medal of Technology.jpg
Robert Metcalfe (2005)
  • Am 22. Mai 1973 präsentierte der Elektroingenieur Robert M. Metcalfe seinen Vorgesetzten die Idee des Ethernet.<ref>Vorlage:Internetquelle</ref> 2003 erhielt er dafür die National Medal of Technology.
  • Der Elektroingenieur Martin Cooper gilt mit seinem im Oktober 1973 eingereichten Patent (US3906166A Radio telephone system) als Erfinder des portablen Mobiltelefons („Taschentelefons“), d. h. das weltweit erste für den Menschen zum Mittragen konzipierte kompakte Mobiltelefon. Es gab zu dieser Zeit bereits Vorläufer des Mobiltelefons die beispielsweise in Zügen und in PKWs fest installiert waren und das A-Netz nutzten.
  • 1973 entwickelte Paul C. Lauterbur die bildgebende magnetische Kernspinresonanz, die Magnetresonanztomographie MRT.<ref name=":4" /> Im Jahre 2009 erhielten in Deutschland rund 5,89 Millionen Menschen mindestens eine Magnetresonanztomographie.
Datei:TI TMS1000NLP 1a.jpg
Mikrocontroller TMS1000 (1979)
Datei:2007Computex e21Forum-MartinCooper.jpg
Martin Cooper (2007)
Datei:Honda P2 Fan Fun Lab.jpg
Humanoider Roboter ASIMO P2 (2008)
  • 1993 präsentierte die Firma Honda den weltweit ersten funktionsfähigen humanoiden Roboter, den ASIMO P1. Einen ersten prototypischen humanoiden Roboter, der aber noch nicht voll funktionsfähig war, entwickelte bereits 1976 die japanische Waseda-Universität. Einer der zurzeit modernsten humanoiden Roboter, der 2013 vorgestellt wurde, ist Atlas. Neben elektrotechnischen Komponenten bestehen sie auch wesentlich aus mechanischen Komponenten, deren Zusammenspiel man heute als Mechatronik bezeichnet.
  • 1994 wurde DVB der erste Standard für digitales Fernsehen in Europa.
  • 1994 wurde das weltweit erste Digitalfernsehen kommerziell per Satellit unter dem Markennamen DirecTV in den USA angeboten.
  • 1996 erschien die Spezifikation der ersten Variante des Universal Serial Bus (USB 1.0).<ref>Vorlage:Internetquelle</ref>
Datei:Linksys-Wireless-G-Router.jpg
WLAN-Router (2011)

21. Jahrhundert

[Bearbeiten]
Datei:Lampadaire LED FR 2014.jpg
LED-Straßenlaterne (2014)
Datei:Mobile phone standards maximal bit rate.png
Entwicklung der Mobilfunknetze (2017)

Ausbildung, Fortbildung und Studium

[Bearbeiten]

Ausbildungsberufe

[Bearbeiten]

Vorlage:Hauptartikel

Fortbildung

[Bearbeiten]

Eine Fortbildung zum Elektromeister findet an einer Meisterschule statt und dauert 1 Jahr Vollzeit bzw. 2 Jahre berufsbegleitend.

Eine Fortbildung zum Elektrotechniker kann an einer Technikerschule in zwei Jahren Vollzeit bzw. vier Jahren berufsbegleitend absolviert werden. Im Ausland, wie zum Beispiel in Frankreich, kann an einer Technikerschule nach der Fortbildung zum Elektrotechniker ein höherer Technikerabschluss (Vorlage:FrS) in zwei weiteren Jahren Vollzeit an einer Technikerschule absolviert werden.

Studienfach

[Bearbeiten]

Der Studiengang Elektrotechnik wurde weltweit erstmals im Januar 1883 an der Technischen Hochschule Darmstadt von Erasmus Kittler eingerichtet. Der Studienplan sah ein vierjähriges Studium mit Abschlussprüfung (zum Diplom-Elektrotechnikingenieur) vor.<ref>Vorlage:Internetquelle</ref><ref>Vorlage:Internetquelle</ref> Elektrotechnik wird mittlerweile an vielen Hochschulen als Studiengang angeboten. An Universitäten wird während des Studiums die wissenschaftliche Arbeit betont, an Fachhochschulen steht die Anwendung physikalischer Kenntnisse im Vordergrund.

Anzahl der Studierenden in Deutschland

[Bearbeiten]

Das Studienfach Elektrotechnik war im Jahre 2020 sehr beliebt, denn es lag bei der Anzahl der Studierenden auf Platz 12. Laut dem statistischem Bundesamt waren zum Wintersemester 2020/2021 an deutschen Hochschulen insgesamt 66.255 Studierende im Studienfach Elektrotechnik/Elektronik eingeschrieben.<ref>Vorlage:Internetquelle</ref>

Grundlagenstudium

[Bearbeiten]

Die ersten Semester eines Elektrotechnik-Studiums sind durch die Lehrveranstaltungen Grundlagen der Elektrotechnik, Physik und Höhere Mathematik geprägt. In den Lehrveranstaltungen Grundlagen der Elektrotechnik werden die physikalischen Grundlagen der Elektrotechnik vermittelt. Diese Elektrizitätslehre umfasst die Themen:

Weitere Grundlagenfächer sind Elektrische Messtechnik, Digitaltechnik, Elektronik sowie Netzwerk- und Systemtheorie. Aufgrund der Interdisziplinarität und der engen Verflechtung mit der Informatik ist auch Programmierung Teil eines Elektrotechnik-Studiums. Belegen die Programmierung und die Informationstechnik einen großen Anteil im Stundenplan wird das Studium sehr oft Elektro- und Informationstechnik genannt.

Vertiefungsrichtung bzw. Spezialisierung

[Bearbeiten]

In den höheren Semestern des Bachelor- und Masterstudiums können Schwerpunkte gesetzt werden. In manchen Studiengängen sind Vertiefungsfächer aus einem breiten Katalog frei wählbar oder die Vertiefungsrichtung ist wählbar oder bereits festgelegt. Als Vertiefungsfächer bzw. Vertiefungsrichtung finden sich klassisch beispielsweise die Elektrische Energietechnik, Nachrichtentechnik, Elektronik, Automatisierungstechnik und Mess-, Steuerungs- und Regelungstechnik (MSR), Antriebstechnik. Neuartige Spezialisierungen sind beispielsweise Elektronische Systeme und Mikroelektronik, Erneuerbare Energien, Technische Gebäudeausrüstung (TGA), Medizintechnik.

Studiengänge die in einer Kombination zweier in der Praxis sehr nahestehenden Vertiefungsrichtungen spezialisieren werden ebenfalls angeboten, wie beispielsweise Energie- und Automatisierungstechnik, Energie- und Antriebstechnik, Nachrichtentechnik und Elektronische Systeme, Medizintechnik und Elektronische Systeme, Energietechnik und Erneuerbare Energien.

Interdisziplinäre Pflicht- und Wahlpflichtfächer

[Bearbeiten]

Da der Beruf des Elektroingenieurs sehr oft auch interdisziplinäre Kenntnisse erfordert, so müssen, je nach Hochschule, auch Pflicht- und Wahlpflichtfächer wie beispielsweise Werkstoffkunde, Betriebswirtschaftslehre, Englisch, Technische Mechanik, Technisches Zeichnen, Patentrecht, Arbeitsschutz, Arbeitsrecht, Kommunikation bestanden werden.

Akademische Titel

[Bearbeiten]

Der jahrzehntelang von den Hochschulen verliehene akademische Grad Diplom-Ingenieur (Dipl.-Ing. bzw. Dipl.-Ing. (FH)) wurde aufgrund des Bologna-Prozesses durch ein zweistufiges System berufsqualifizierender Studienabschlüsse (typischerweise in der Form von Bachelor und Master) größtenteils ersetzt. Der Bachelor (Bachelor of Engineering oder Bachelor of Science) ist ein erster berufsqualifizierender akademischer Grad, der je nach Prüfungsordnung des jeweiligen Fachbereichs nach einer Studienzeit von 6 bzw. 7 Semestern erworben werden kann. Dieser erste akademische Grad befähigt, den rechtlich geschützten Titel „Ingenieur“ oder „Elektroingenieur“ tragen zu dürfen.<ref>Vorlage:Internetquelle</ref><ref>Vorlage:Internetquelle</ref> Nach einer weiteren Studienzeit von 4 bzw. 3 Semestern kann der Master als zweiter akademischer Grad (Master of Engineering oder Master of Science) erlangt werden.

Der Doktoringenieur (Dr.-Ing.) ist der höchste akademische Grad, der im Anschluss an ein abgeschlossenes Masterstudium im Rahmen einer Assistenzpromotion oder in einer Graduate School erreicht werden kann. Die Ingenieur-Ehrendoktorwürde (Dr.-Ing. E. h.) kann von Universitäten für besondere akademische oder wissenschaftliche Verdienste an Akademiker oder Nichtakademiker verliehen werden, beispielsweise 1911 von der Technischen Universität Darmstadt an Michail Ossipowitsch Doliwo-Dobrowolski.

Weitere im Ausland anerkannte akademische Titel

[Bearbeiten]

Neben den Hochschulabschlüssen Bachelor, Master und Ph.D, sind in den USA, Kanada, Australien, Hongkong und Niederlande noch das Hochschulstudium Associate Degree mit einer Regelstudienzeit von zwei Jahren anerkannt, wie zum Beispiel im Bereich Elektrotechnik das AET oder der erworbene Titel Electrical Engineering technician (franz. Ingénieur-technicien en électrotechnique). Das Associate-Degree gilt in den gelisteten Ländern als akademischer Grad, ist aber in anderen Ländern, besonders in Europa, meistens nicht als Hochschulabschluss bzw. akademischer Grad anerkannt.

Lehramt

[Bearbeiten]

An einigen Hochschulen kann der Bachelor-Studiengang Elektro- und Informationstechnik in sieben Semestern mit anschließendem dreisemestrigem Master-Studiengang Master für Berufliche Bildung studiert werden. Mit diesem Master-Abschluss und nach weiteren 1,5 Jahren Referendariatszeit besteht die Möglichkeit, eine berufliche Tätigkeit als Gewerbelehrer (höherer Dienst) an einer Berufsschule zu finden.

Interdisziplinäres Studium

[Bearbeiten]

Studien die Elektrotechnik mit einer oder mehreren Fachdisziplinen kombinieren gibt es. Die Studien Maschinenbau-Elektrotechnik, Mechatronik, Robotik, Versorgungstechnik und Wirtschaftsingenieurwesen-Elektrotechnik können hier als klassische Beispiele genannt werden.

Organisationen

[Bearbeiten]

International

[Bearbeiten]

Europäisch

[Bearbeiten]

Deutschland

[Bearbeiten]

Verbände

[Bearbeiten]

International

[Bearbeiten]
  • Der größte Berufsverband für Elektrotechnik weltweit ist das Institute of Electrical and Electronics Engineers (IEEE). Er zählt über 420.000 Mitglieder und publiziert Zeitschriften auf allen relevanten Fachgebieten in Englisch. Seit 2008 gab es den IEEE Global History Network (IEEE GHN), wobei in verschiedenen Kategorien wichtige Meilensteine (beurteilt durch ein Fachgremium) und persönliche Erinnerungen von Ingenieuren (Vorlage:Lang) festgehalten werden können. Solche Erinnerungsberichte von Schweizer Elektroingenieuren können als Beispiele eingesehen werden.<ref>Vorlage:Internetquelle</ref><ref>Vorlage:Internetquelle</ref> Seit Anfang 2015 hat sich der IEEE GHN einer erweiterten Organisation Engineering and Technology History Wiki angeschlossen, welche weitere Fachbereiche des Ingenieurwesens umfasst.

Deutschland

[Bearbeiten]
  • Der VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V. ist ein technisch-wissenschaftlicher Verband in Deutschland. Mit ca. 35.000 Mitgliedern engagiert sich der VDE für ein besseres Innovationsklima, Sicherheitsstandards, für eine moderne Ingenieurausbildung und eine hohe Technikakzeptanz in der Bevölkerung.
  • Der Zentralverband der Deutschen Elektro- und Informationstechnischen Handwerke (ZVEH) vertritt die Interessen von Unternehmen aus den drei Handwerken Elektrotechnik, Informationstechnik und Elektromaschinenbau. ZVEH-Mitglied waren im Jahr 2014 55.579 Unternehmen, die 473.304 Arbeitnehmer, davon rund 38.800 Auszubildende, beschäftigten. Dem ZVEH als Bundesinnungsverband gehören zwölf Fach- und Landesinnungsverbände mit insgesamt etwa 330 Innungen an.
  • Der Zentralverband Elektrotechnik- und Elektronikindustrie e. V. (ZVEI) setzt sich für die Interessen der Elektroindustrie in Deutschland und auf internationaler Ebene ein. ZVEI-Mitglied sind mehr als 1.600 Unternehmen, in denen im Jahr 2014 etwa 844.000 Beschäftigte in Deutschland tätig waren. Als ZVEI-Untergliederungen finden sich derzeit 22 Fachverbände.

Österreich

[Bearbeiten]

Schweiz

[Bearbeiten]

Auszeichnungen, Preise und Ehrungen

[Bearbeiten]

International

[Bearbeiten]
  • Die IEEE Medal of Honor ist die höchste Auszeichnung des IEEE, welche im Fachbereich Informations- und Elektrotechnik für außergewöhnliche Arbeiten und Karrieren seit 1917 jährlich vergeben wird.
  • Der Kyoto-Preis ist eine jährlich verliehene Auszeichnung für überragende Leistungen in Wissenschaft und Kunst. Neben dem Nobelpreis handelt es sich um eine der höchsten Auszeichnungen in Wissenschaft und Kultur. Eine der Disziplinen innerhalb der Kategorie Hochtechnologie ist die Elektrotechnik und Elektronik.

Deutschland

[Bearbeiten]

Unfälle

[Bearbeiten]

Bei der Nutzung von der Elektrotechnik kommt es immer wieder zu Stromunfällen sowohl bei der Nutzung als auch als Arbeitsunfall. 1746 wurde der weltweit erste nicht-tödliche Arbeitsunfall dokumentiert, 1879 der weltweit erste tödliche Arbeitsunfall. Akademische Fachkräfte im Bereich der Elektrotechnik sind von Arbeitsunfällen ebenfalls betroffen, sofern diese sich auf Baustellen oder Industrieanlagen aufhalten, an Schaltvorgängen im Mittel- und Hochspannungsbereich beteiligt sind, einen Dienstwagen nutzen, oder in Laboren oder Versuchsanlagen mit praktischen Anwendungen der Niederspannung oder höheren Spannungen arbeiten. Und das trifft in der Regel bei über 95 % der Arbeitsstellen zu.

Berufe, bei der die Gefahr eines Arbeitsunfalls statistisch sehr niedrig ist: Bürokaufmann, Buchhalter, Sekretärin, Fachwirt im Marketing, Fachleute in der Softwareentwicklung, Anwälte, Ärzte, Krankenschwester, Pfleger, Lehrer, Erzieher, Sozialarbeiter, Kellner, Friseure. Hierbei ist zu beachten, dass bereits ein kleiner Schnitt durch Papier am Finger als Arbeitsunfall bewertet wird.<ref>Vorlage:Internetquelle</ref> Im Gegensatz zur Elektrotechnik sind dies Berufe, in denen kein Dienstwagen gefahren wird, oder in der Nähe von gefährlichen Gerätschaften, Maschinen, Baustellen oder Industrieanlagen gearbeitet wird.

Statistisches Bundesamt

[Bearbeiten]

Im Jahr 2018 gab es in Deutschland 1.163 tödliche Arbeitsunfälle. Elektriker waren hierbei die dritthäufigste Berufsgruppe mit tödlichen Arbeitsunfällen und rangieren sich zwischen Kraftfahrer und Dachdecker:

  • Bauarbeiter (221)
  • Kraftfahrer (131)
  • Elektriker (102)
  • Dachdecker (96)
  • Industriearbeiter (93)
  • Zimmerer (88)
  • Maler und Lackierer (86)
  • Schlosser (84)
  • Maurer (83)
  • Monteure (83)

Die meisten tödlichen Arbeitsunfälle ereigneten sich im Baugewerbe (31,6 %), gefolgt von der Industrie (26,6 %) und dem Handel (15,7 %). Die häufigsten Unfallursachen waren Stürze (33,9 %), Verkehrsunfälle (22,2 %) und Quetschungen/Pressungen (12,7 %). Die meisten tödlichen Arbeitsunfälle ereigneten sich bei Männern (96,3 %). In absoluten Zahlen machten Frauen nur 3,7 % aller tödlichen Arbeitsunfälle aus, dies liegt allerdings auch daran, dass deutlich weniger Frauen in diesen Berufen arbeiten.<ref>Vorlage:Internetquelle</ref><ref>Vorlage:Internetquelle</ref> Der Anteil von Frauen im Elektrohandwerk ist in Deutschland sehr gering und laut einer Studie des statistischen Bundesamtes lag der Anteil im Jahr 2018 bei 2,2 % und im Jahr 2022 bei 4,3 %.<ref>Vorlage:Internetquelle</ref>

DGUV ist eine gesetzliche Unfallversicherungsträgerin, die für die Sicherheit und Gesundheit der Beschäftigten in Deutschland zuständig ist. 2022 hat die DGUV berichtet, dass zwischen 3.500 und 4.000 Stromunfälle laut Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BG ETEM) jedes Jahr gemeldet werden, bis zu zehn enden tödlich. Die beruflichen Unfälle passieren zu rund 88 Prozent im Niederspannungsbereich. „Meist ist die Ursache, dass die Beteiligten die Gefahr falsch einschätzen oder gar nicht erst erkennen“, sagt Martin Schmidt, seit 28 Jahren Aufsichtsperson bei der BG ETEM. Und dies unabhängig davon, wie viel berufliche Erfahrung sie im Umgang mit Strom haben. 48,2 % der Opfer von Stromunfällen bringen Berufserfahrung als Elektrofachkraft mit, zum Teil mehr als 20 Jahre. 25,9 % der Unfälle von Elektrofachkräften geschahen, weil sie gegen die 5 Sicherheitsregeln verstoßen haben.<ref>Vorlage:Internetquelle</ref>

In der 2022 erschienenen Statistik vom VDE der Stromunfälle mit Todesfolge in Deutschland kommt diese zu dem Schluss, dass Sicherheit kontinuierlich zugenommen hat, trotz steigender Anwendung in Industrie, Gewerbe und Haushalt. Die VDE unterscheidet hierbei zwischen drei Kategorien: Unfälle im Gewerbe und Industrie, Haushalt und Sonstige. Zu sehen ist ein Rückgang der Stromunfälle in den letzten 45 Jahren von etwa 256 Stromunfälle mit Todesfolge in 1970 auf 36 Stromunfälle mit Todesfolge pro Jahr 2015, dabei nennt die VDE die Stromunfälle mit Todesfolge der letzten Jahre eine Stagnation auf niedriges Niveau. In der Studie zeigt sich der Durchschnitt der letzten 5 Jahre 2011 bis 2015 mit 44,4 Stromunfällen mit Todesfolge pro Jahr in Deutschland.<ref>Vorlage:Internetquelle</ref><ref>Vorlage:Internetquelle</ref>

In dieser Studie nicht berücksichtigt sind nicht tödliche Stromunfälle mit leichter oder schwerer Verletzung.

Siehe auch

[Bearbeiten]

Vorlage:Portal Vorlage:Portal

Literatur

[Bearbeiten]
  • Winfield Hill, Paul Horowitz: Die hohe Schule der Elektronik, Tl.2, Digitaltechnik. Elektor-Verlag, 1996, ISBN 3-89576-025-0.
  • Eugen Philippow, Karl Walter Bonfig (Bearb.): Grundlagen der Elektrotechnik. 10. Auflage. Verlag Technik, Berlin 2000, ISBN 3-341-01241-9.
  • Winfield Hill, Paul Horowitz: Die hohe Schule der Elektronik, Tl.1, Analogtechnik. Elektor-Verlag, 2002, ISBN 3-89576-024-2.
  • Manfred Albach: Grundlagen der Elektrotechnik 1. Erfahrungssätze, Bauelemente, Gleichstromschaltungen. Pearson Studium, München 2004, ISBN 3-8273-7106-6.
  • Manfred Albach: Grundlagen der Elektrotechnik 2. Periodische und nicht periodische Signalformen. Pearson Studium, München 2005, ISBN 3-8273-7108-2.
  • Gert Hagmann: Grundlagen der Elektrotechnik. 11. Auflage. Wiebelsheim 2005, ISBN 3-89104-687-1.
  • Helmut Lindner, Harry Brauer, Constanz Lehmann: Taschenbuch der Elektrotechnik und Elektronik. 9. Auflage. Fachbuchverlag im Carl Hanser Verlag, Leipzig/München 2008, ISBN 978-3-446-41458-7.
  • Siegfried Altmann, Detlef Schlayer: Lehr- und Übungsbuch Elektrotechnik. 4. Auflage. Fachbuchverlag im Carl Hanser Verlag, Leipzig/München 2008, ISBN 978-3-446-41426-6.
  • Wolfgang König: Technikwissenschaften. Die Entstehung der Elektrotechnik aus Industrie und Wissenschaft zwischen 1880 und 1914. G + B Verlag Fakultas, Chur 1995, ISBN 3-7186-5755-4 (Softcover).
  • Henning Boëtius: Geschichte der Elektrizität erzählt von Henning Boëtius. 1. Auflage, Beltz & Gelberg, ISBN 978-3-407-75326-7.
  • Siegfried Buchhaupt: Technik und Wissenschaft: Das Beispiel der Elektrotechnik. In: Technikgeschichte. Band 65, H. 3, 1998, S. 179–206.
  • Fritz Schulz-Linkholt: Grundlagen der Elektrotechnik. 1952; 3. Auflage 1964.
  • Thomas Harriehausen, Dieter Schwarzenau: Moeller Grundlagen der Elektrotechnik. 24., verb. Aufl. 2020, Springer Verlag, ISBN 978-3-658-27839-7.
[Bearbeiten]

Vorlage:Commonscat Vorlage:Wiktionary Vorlage:Wikibooks Vorlage:Wikibooks Vorlage:Wikibooks Vorlage:Wikisource

Videos:

Einzelnachweise

[Bearbeiten]

<references responsive />

Vorlage:Normdaten